
Linux Device Driver

Analog/Digital Signal Interfacing

User Program & Kernel Interface

Loadable Kernel Module(LKM)

 A new kernel module can be added on the fly (while OS

is still running)

 LKMs are often called “kernel modules”

 They are not user program

Loadable Kernel Module (LKM)

 A new kernel module can be added on the fly (while OS

is still running)

 LKMs are often called “kernel modules”

 They are not user program

Types of LKM

 Device drivers

 Filesystem driver (one for ext2, MSDOS FAT16, 32, NFS)

 System calls

 Network Drivers

 TTY line disciplines. special terminal devices.

 Executable interpreters.

Basic LKM (program)

 Every LKM consist of two basic functions (minimum) :
int init_module(void) /*used for all initialition stuff*/

{

...

}

void cleanup_module(void) /*used for a clean shutdown*/

{

...

}

 Loading a module - normally retricted to root - is managed by issuing the

follwing command: # insmod module.o

LKM Utilities cmd

 insmod
 Insert an LKM into the kernel.

 rmmod
 Remove an LKM from the kernel.

 depmod
 Determine interdependencies between LKMs.

 kerneld
 Kerneld daemon program

 ksyms
 Display symbols that are exported by the kernel for use by new LKMs.

 lsmod
 List currently loaded LKMs.

 modinfo
 Display contents of .modinfo section in an LKM object file.

 modprobe
 Insert or remove an LKM or set of LKMs intelligently. For example, if you must load A before

loading B, Modprobe will automatically load A when you tell it to load B.

Common LKM util cmd

 Create a special device file
% mknode /dev/driver c 40 0

 Insert a new module
% insmod modname

 Remove a module

 %rmmod modname

 List module

% lsmod

Or % more /proc/modules
audio 37840 0

cmpci 24544 0

soundcore 4208 4 [audio cmpci]

nfsd 70464 8 (autoclean)

Linux Device Drivers

 A set of API subroutines (typically system calls) interface

to hardware

 Hide implementation and hardware-specific details from

a user program

 Typically use a file interface metaphor

 Device is a special file

Linux Device Drivers (continued)

 Manage data flow between a user program and devices

 A self-contained component (add/remove from kernel)

 A user can access the device via file name in /dev , e.g.

/dev/lp0

General implementation steps

1. Understand the device characteristic and supported
commands.

2. Map device specific operations to unix file operation

3. Select the device name (user interface)
 Namespace (2-3 characters, /dev/lp0)

4. (optional) select a major number and minor (a device
special file creation) for VFS interface

 Mapping the number to right device sub-routines

5. Implement file interface subroutines

6. Compile the device driver

7. Install the device driver module with loadable kernel
module (LKM)

8. or Rebuild (compile) the kernel

Read/write (I/O)

 Polling

 Interrupt based

Device Driver interface

Note: This picture is excerpted from Write a Linux Hardware Device Driver, Andrew O’Shauqhnessy, Unix world

VFS & Major number
 principal interface between a device driver and Linux kernel

File operation structure

 struct file_operations Fops
= {

NULL, /* seek */

xxx_read,

xxx_write,

NULL, /* readdir */

NULL, /* select */

NULL, /* ioctl */

NULL, /* mmap */

xxx_open,

NULL, /* flush */

xxx_release /* a.k.a. close */

 };

• struct file_operations Fops
= {

read: xxx_read,

write: xxx_write,

open: xxx_open,

release: xxx_release, /*

a.k.a. close */

};

Watch out compatibility issue with Linux version

Device special file

 Device number

 Major (used to VFS mapping to right functions)

 Minor (sub-devices)

 mknod /dev/stk c 38 0

 ls –l /dev/tty
 crw-rw-rw- 1 root root 5, 0 Apr 21 18:33 /dev/tty

Register and unregister device

int init_module(void) /*used for all initialition stuff*/

{

/* Register the character device (atleast try) */

Major = register_chrdev(0,

DEVICE_NAME,

&Fops);

:

}

void cleanup_module(void) /*used for a clean shutdown*/

{ret = unregister_chrdev(Major, DEVICE_NAME);

...

}

Register and unregister device

 compile
-Wall -DMODULE -D__KERNEL__ -DLINUX –DDEBUG -I

/usr/include/linux/version.h -I/lib/modules/`uname -r`/build/include

 Install the module
%insmod module.o

 List the module
%lsmod

 If you let the system pick Major number, you can find the
major number (for special creation) by

% more /proc/devices

 Make a special file
% mknod /dev/device_name c major minor

Device Driver Types

 A character device driver (c)

 Most devices are this type (e.g.Modem, lp, USB

 No buffer.

 A block device driver (b)

 through a system buffer that acts as a data cache.

 Hard drive controller and HDs

Implementation

 Assuming that your device name is Xxx

 Xxx_init() initialize the device when OS is booted

 Xxx_open() open a device

 Xxx_read() read from kernel memory

 Xxx_write() write

 Xxx_release() clean-up (close)

 init_module()

 cleanup_module()

