Linux Device Driver

Analog/Digital Signal Interfacing

User Program & Kernel Interface

User Fragrams

I

Librarios
User Level &
Kemellevel 4 TN S
Siestem Call interface
F F Y
w v

F 5

File Subsystarm ¥ Process Control Subsystem

F 3 F

Scheduler | Memany Inter-process

¥ Wanagement | Communication
Bufter Cache F
F 3
r r

Chatacter | Block

Device Drivers
F 3

r r
Hardware Control

Kernel Leval

Hardware Level!

Harchware

Note: This picture is excerpted from Write a Linux Hardware Device Driver, Andrew O’'Shaughnessy, Unix world

Loadable Kernel Module(LKM)

= A new kernel module can be added on the fly (while OS
IS still running)

= | KMs are often called “kernel modules”
= They are not user program

Loadable Kernel Module (LKM)

= A new kernel module can be added on the fly (while OS
IS still running)

= | KMs are often called “kernel modules”
= They are not user program

Types of LKM

Device drivers

Filesystem driver (one for ext2, MSDOS FAT16, 32, NFS)
System calls

Network Drivers

TTY line disciplines. special terminal devices.

Executable interpreters.

Basic LKM (program)

= Every LKM consist of two basic functions (minimum)
int init_module(void) /*used for all initialition stuff*/

{

}

void cleanup_module(void) /*used for a clean shutdown*/

{

}

= Loading a module - normally retricted to root - is managed by issuing the
follwing command: # insmod module.o

LKM Utilities cmd

insmod
= |Insert an LKM into the kernel.
rmmod
= Remove an LKM from the kernel.
depmod
= Determine interdependencies between LKMs.
kerneld
= Kerneld daemon program
ksyms
= Display symbols that are exported by the kernel for use by new LKMs.
Ismod
= List currently loaded LKMs.
modinfo
= Display contents of .modinfo section in an LKM object file.
modprobe

= |Insert or remove an LKM or set of LKMs intelligently. For example, if you must load A before
loading B, Modprobe will automatically load A when you tell it to load B.

Common LKM util cmd

Create a special device file
% mknode /dev/driver c 40 0

Insert a new module
% insmod modname

Remove a module

%rmmod modname

List module
% Ismod
Or % more /proc/modules
audio 37840 O
cmpci 24544 0
soundcore 4208 4 [audio cmpci]

nfsd 70464 8 (autoclean)

Linux Device Drivers

A set of API subroutines (typically system calls) interface
to hardware

Hide implementation and hardware-specific details from
a user program

Typically use a file interface metaphor
Device is a special file

Linux Device Drivers (continued)

= Manage data flow between a user program and devices
= A self-contained component (add/remove from kernel)

= A user can access the device via file name in /dev , e.g.
/dev/Ip0

General Implementation steps

1.

8.

Understand the device characteristic and supported
commands.

Map device specific operations to unix file operation

Select the device name (user interface)
Namespace (2-3 characters, /dev/Ip0)

(optional) select a major number and minor (a device
special file creation) for VFS interface

Mapping the number to right device sub-routines
Implement file interface subroutines
Compile the device driver

Install the device driver module with loadable kernel
module (LKM)

or Rebuild (compile) the kernel

Read/write (1/0)

= Polling

= [nterrupt based

Device Driver Interface

NESY PROSYaIns

sistern calls
fi=opan Yolevdoo 0 RDWR,) regdifd out_data, 817 | | wrilelfd In_datz, 8); cfoseol;

| | |

I irtual Fllesissiern Switc h
Linuy karneg! I
device diiver rolltines| ool open(] x_reaci] IT‘-W{_ Wit xxo_clase()
] []

ihdicates data flow

Note: This picture is excerpted from Write a Linux Hardware Device Driver, Andrew O’Shaughnessy, Unix world

VES & Major number

= principal interface between a device driver and Linux kernel

Nl BssE-process

executes 4 system cal .. apen oewdoo O RO, O

e e BB S e :
i device citivar solree cocle

o open)

{

— .}

VFsS
virtua! filessterm switch

xo_chose(]

{

1

:

1
cirivier rautines reglstered]

1

1

finux kernel with VFS thraugh the |

fife_operations structure B

astruct flie_operations o fops =1

HEK_OPER,
X close,

: } .l.
Ve)

{

y register chrcewi 22, e Seood_fops));

File operation structure

= struct file_operations Fops) Etr{UCt file_operations Fops
= { -
NULL, /*seek */ read. xxx_read,
xxx_read, write: Xxx write,
XXX_write, _ -
NULL, /* readdir */ Open. xxx_open,
NULL, /*select*/ release: xxx_release, /*
NULL, /*ioctl*/ a.k.a. close */
NULL, /* mmap */ X:
XXX_open, ’

NULL, /* flush */
xxx_release /* a.k.a. close */

Watch out compatibility issue with Linux version

Device special file

= Device number
= Major (used to VFS mapping to right functions)
= Minor (sub-devices)

= mknod /dev/stk c 38 0
= |s —| /dev/tty

= Crw-rw-rw- 1root root 5, 0 Apr 21 18:33 /devitty

Register and unregister device

int init_module(void) /*used for all initialition stuff*/

{
[* Register the character device (atleast try) */
Major = register_chrdev(0,
DEVICE_NAME,
&Fops);
}

void cleanup_module(void) /*used for a clean shutdown*/

{ret = unregister_chrdev(Major, DEVICE_NAME);

Register and unregister device

compile
-Wall -DMODULE -D_ KERNEL _ -DLINUX —-DDEBUG -I
fusr/include/linux/version.h -l/lib/modules/ uname -r /build/include

Install the module

%insmod module.o

List the module
%lsmod

If you let the system pick Major number, you can find the
major number (for special creation) by
% more /proc/devices

Make a special file
% mknod /dev/device_name ¢ major minor

Device Driver Types

= A character device driver (c)
= Most devices are this type (e.g.Modem, Ip, USB
= No buffer.

= A block device driver (b)

= through a system buffer that acts as a data cache.
= Hard drive controller and HDs

Implementation

Assuming that your device name is Xxx
Xxx_init() initialize the device when OS is booted
Xxx_open() open a device

Xxx_read() read from kernel memory
XXX_write() write

Xxx_release() clean-up (close)

Init_module()

cleanup_module()

