Linux Device Driver

Analog/Digital Signal Interfacing
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Loadable Kernel Module(LKM)

= A new kernel module can be added on the fly (while OS
IS still running)

= | KMs are often called “kernel modules”
= They are not user program
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Types of LKM

Device drivers

Filesystem driver (one for ext2, MSDOS FAT16, 32, NFS)
System calls

Network Drivers

TTY line disciplines. special terminal devices.

Executable interpreters.



Basic LKM (program)

= Every LKM consist of two basic functions (minimum)
int init_module(void) /*used for all initialition stuff*/

{

}

void cleanup_module(void) /*used for a clean shutdown*/

{

}

= Loading a module - normally retricted to root - is managed by issuing the
follwing command: # insmod module.o



LKM Utilities cmd

insmod
= |Insert an LKM into the kernel.
rmmod
= Remove an LKM from the kernel.
depmod
= Determine interdependencies between LKMs.
kerneld
= Kerneld daemon program
ksyms
= Display symbols that are exported by the kernel for use by new LKMs.
Ismod
= List currently loaded LKMs.
modinfo
= Display contents of .modinfo section in an LKM object file.
modprobe

= |Insert or remove an LKM or set of LKMs intelligently. For example, if you must load A before
loading B, Modprobe will automatically load A when you tell it to load B.



Common LKM util cmd

Create a special device file
% mknode /dev/driver c 40 0

Insert a new module
% insmod modname

Remove a module

%rmmod modname

List module
% Ismod
Or % more /proc/modules
audio 37840 O
cmpci 24544 0
soundcore 4208 4 [audio cmpci]

nfsd 70464 8 (autoclean)



Linux Device Drivers

A set of API subroutines (typically system calls) interface
to hardware

Hide implementation and hardware-specific details from
a user program

Typically use a file interface metaphor
Device is a special file



Linux Device Drivers (continued)

= Manage data flow between a user program and devices
= A self-contained component (add/remove from kernel)

= A user can access the device via file name in /dev , e.g.
/dev/Ip0



General Implementation steps

1.

8.

Understand the device characteristic and supported
commands.

Map device specific operations to unix file operation

Select the device name (user interface)
Namespace (2-3 characters, /dev/Ip0)

(optional) select a major number and minor (a device
special file creation) for VFS interface

Mapping the number to right device sub-routines
Implement file interface subroutines
Compile the device driver

Install the device driver module with loadable kernel
module (LKM)

or Rebuild (compile) the kernel



Read/write (1/0)

= Polling

= [nterrupt based
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VES & Major number

= principal interface between a device driver and Linux kernel
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File operation structure

= struct file_operations  Fops ) Etr{UCt file_operations  Fops
= { -
NULL, /*seek */ read. xxx_read,
xxx_read, write: Xxx write,
XXX_write, _ -
NULL, /* readdir */ Open. xxx_open,
NULL, /*select*/ release: xxx_release, /*
NULL, /*ioctl*/ a.k.a. close */
NULL, /* mmap */ X:
XXX_open, ’

NULL, /* flush */
xxx_release /* a.k.a. close */

Watch out compatibility issue with Linux version



Device special file

= Device number
= Major (used to VFS mapping to right functions)
= Minor (sub-devices)

= mknod /dev/stk c 38 0
= |s —| /dev/tty

= Crw-rw-rw- 1root root 5, 0 Apr 21 18:33 /devitty



Register and unregister device

int init_module(void) /*used for all initialition stuff*/

{
[* Register the character device (atleast try) */
Major = register_chrdev(0,
DEVICE_NAME,
&Fops);
}

void cleanup_module(void) /*used for a clean shutdown*/

{ret = unregister_chrdev(Major, DEVICE_NAME);



Register and unregister device

compile
-Wall -DMODULE -D_ KERNEL _ -DLINUX —-DDEBUG -I
fusr/include/linux/version.h -l/lib/modules/ uname -r /build/include

Install the module

%insmod module.o

List the module
%lsmod

If you let the system pick Major number, you can find the
major number (for special creation) by
% more /proc/devices

Make a special file
% mknod /dev/device_name ¢ major minor



Device Driver Types

= A character device driver ( c)
= Most devices are this type (e.g.Modem, Ip, USB
= No buffer.

= A block device driver (b)

= through a system buffer that acts as a data cache.
= Hard drive controller and HDs



Implementation

Assuming that your device name is Xxx
Xxx_init() initialize the device when OS is booted
Xxx_open() open a device

Xxx_read() read from kernel memory
XXX_write() write

Xxx_release() clean-up (close)

Init_module()

cleanup_module()



