
Linux Device Driver

Analog/Digital Signal Interfacing

User Program & Kernel Interface

Loadable Kernel Module(LKM)

 A new kernel module can be added on the fly (while OS

is still running)

 LKMs are often called “kernel modules”

 They are not user program

Loadable Kernel Module (LKM)

 A new kernel module can be added on the fly (while OS

is still running)

 LKMs are often called “kernel modules”

 They are not user program

Types of LKM

 Device drivers

 Filesystem driver (one for ext2, MSDOS FAT16, 32, NFS)

 System calls

 Network Drivers

 TTY line disciplines. special terminal devices.

 Executable interpreters.

Basic LKM (program)

 Every LKM consist of two basic functions (minimum) :
int init_module(void) /*used for all initialition stuff*/

{

...

}

void cleanup_module(void) /*used for a clean shutdown*/

{

...

}

 Loading a module - normally retricted to root - is managed by issuing the

follwing command: # insmod module.o

LKM Utilities cmd

 insmod
 Insert an LKM into the kernel.

 rmmod
 Remove an LKM from the kernel.

 depmod
 Determine interdependencies between LKMs.

 kerneld
 Kerneld daemon program

 ksyms
 Display symbols that are exported by the kernel for use by new LKMs.

 lsmod
 List currently loaded LKMs.

 modinfo
 Display contents of .modinfo section in an LKM object file.

 modprobe
 Insert or remove an LKM or set of LKMs intelligently. For example, if you must load A before

loading B, Modprobe will automatically load A when you tell it to load B.

Common LKM util cmd

 Create a special device file
% mknode /dev/driver c 40 0

 Insert a new module
% insmod modname

 Remove a module

 %rmmod modname

 List module

% lsmod

Or % more /proc/modules
audio 37840 0

cmpci 24544 0

soundcore 4208 4 [audio cmpci]

nfsd 70464 8 (autoclean)

Linux Device Drivers

 A set of API subroutines (typically system calls) interface

to hardware

 Hide implementation and hardware-specific details from

a user program

 Typically use a file interface metaphor

 Device is a special file

Linux Device Drivers (continued)

 Manage data flow between a user program and devices

 A self-contained component (add/remove from kernel)

 A user can access the device via file name in /dev , e.g.

/dev/lp0

General implementation steps

1. Understand the device characteristic and supported
commands.

2. Map device specific operations to unix file operation

3. Select the device name (user interface)
 Namespace (2-3 characters, /dev/lp0)

4. (optional) select a major number and minor (a device
special file creation) for VFS interface

 Mapping the number to right device sub-routines

5. Implement file interface subroutines

6. Compile the device driver

7. Install the device driver module with loadable kernel
module (LKM)

8. or Rebuild (compile) the kernel

Read/write (I/O)

 Polling

 Interrupt based

Device Driver interface

Note: This picture is excerpted from Write a Linux Hardware Device Driver, Andrew O’Shauqhnessy, Unix world

VFS & Major number
 principal interface between a device driver and Linux kernel

File operation structure

 struct file_operations Fops
= {

NULL, /* seek */

xxx_read,

xxx_write,

NULL, /* readdir */

NULL, /* select */

NULL, /* ioctl */

NULL, /* mmap */

xxx_open,

NULL, /* flush */

xxx_release /* a.k.a. close */

 };

• struct file_operations Fops
= {

read: xxx_read,

write: xxx_write,

open: xxx_open,

release: xxx_release, /*

a.k.a. close */

};

Watch out compatibility issue with Linux version

Device special file

 Device number

 Major (used to VFS mapping to right functions)

 Minor (sub-devices)

 mknod /dev/stk c 38 0

 ls –l /dev/tty
 crw-rw-rw- 1 root root 5, 0 Apr 21 18:33 /dev/tty

Register and unregister device

int init_module(void) /*used for all initialition stuff*/

{

/* Register the character device (atleast try) */

Major = register_chrdev(0,

DEVICE_NAME,

&Fops);

:

}

void cleanup_module(void) /*used for a clean shutdown*/

{ret = unregister_chrdev(Major, DEVICE_NAME);

...

}

Register and unregister device

 compile
-Wall -DMODULE -D__KERNEL__ -DLINUX –DDEBUG -I

/usr/include/linux/version.h -I/lib/modules/`uname -r`/build/include

 Install the module
%insmod module.o

 List the module
%lsmod

 If you let the system pick Major number, you can find the
major number (for special creation) by

% more /proc/devices

 Make a special file
% mknod /dev/device_name c major minor

Device Driver Types

 A character device driver (c)

 Most devices are this type (e.g.Modem, lp, USB

 No buffer.

 A block device driver (b)

 through a system buffer that acts as a data cache.

 Hard drive controller and HDs

Implementation

 Assuming that your device name is Xxx

 Xxx_init() initialize the device when OS is booted

 Xxx_open() open a device

 Xxx_read() read from kernel memory

 Xxx_write() write

 Xxx_release() clean-up (close)

 init_module()

 cleanup_module()

