
Semaphores



Semaphore (Token)

• A kernel object
• One or more threads of execution can 

acquire or release for the purpose of 
synchronization or mutual exclusion



Creation of Semaphore

• Semaphore control block (SCB)
• Unique ID
• Value (binary or count)
• Task-waiting list





Semaphore

• Semaphore is like a key that allows a task 
to carry out some operation or to access a 
resource. (e.g. a key or keys to the lab)



Semaphore Count

• Semaphore (Token) count is initialized 
when created

• A task acquire the semaphore: count is 
decremented

• A task releases the semaphore: count is 
incremented

• Token count = 0 : a requesting task blocks



Task Waiting List

• FIFO or priority
• When an unavailable semaphore becomes 

available : first task in the list to acquire, 
blocked task-> running state (highest 
priority) or ready state



Binary Semaphore

• Value: 0 unavailable/empty
• Value: 1 available/full



Counting Semaphore



Mutual Exclusion (Mutex) 
Semaphore

• A special binary semaphore that supports 
ownership, recursive access, task deletion 
safety, priority inversion avoidance 
protocol.



Mutex Ownership

• Ownership of a mutex is gained when a 
task first locks the mutex by acquiring it.

• A task loses ownership of the mutex when 
it unlocks it by releasing it.

• Recursive locking: when a task requiring 
exclusive access to a shared resource 
calls one or more routines that also require 
access to the same resource.



Mutex

• Task Deletion Safety: While a task owns a 
mutex, the task cannot be deleted

• Priority inversion avoidance



Typical Semaphore Operations

• Create
• Delete
• Acquire : wait forever, wait with a timeout, 

do not wait
• Release
• Flush: unlocks all tasks waiting on a 

semaphore



Typical Semaphore Use

• Wait-and-Signal Synchronization



Wait-and-Signal Synchronization

• tWaitTask runs first
• tWaitTask makes a request to acquire the 

semaphore but blocked
• tSignalTask has a chance to run
• tSignalTask releases the semaphore
• tWaitTask unblocked and running



Wait-and-Signal Synchronization

tWaitTask()
{

…
Acquire binary semaphore
…

}
tSignalTask()
{

…
Release binary semaphore
…

}



Multiple-Task Wait_and_Signal
Synchronization

• tSignalTask: lower priority



Multiple-Task Wait_and_Signal
Synchronization

tWaitTask1()
{

Acquire binary semaphore
}
tWaitTask2()
{

…
}
tSignalTask()
{

Flush binary semaphore’s task-waiting list
}



Single Shared-Resource-Access 
Synchronization

• Danger: problem when the 3rd task release 
-> use mutex



Single Shared-Resource-Access 
Synchronization

tAccessTask()
{

Acquire binary semaphore
Read or write to shared resource
Release binary semaphore

}



Recursive Shared-Resource-
Access Synchronization

• tAccessTask calls -> Routine A -> Routine 
B : need to access to the same shared 
resource



Recursive Shared-Resource-
Access Synchronization

RoutineB()
{

…
Acquire mutex
Access shared resource
Call RoutineB
Release mutex
…

}

tAccessTask()
{

…
Acquire mutex
Access shared resource
Call RoutineA
Release mutex
…

}
RoutineA()
{

…
Acquire mutex
Access shared resource
Call RoutineB
Release mutex
…

}


	Semaphores
	Semaphore (Token)
	Creation of Semaphore
	
	Semaphore
	Semaphore Count
	Task Waiting List
	Binary Semaphore
	Counting Semaphore
	Mutual Exclusion (Mutex) Semaphore
	Mutex Ownership
	Mutex
	Typical Semaphore Operations
	Typical Semaphore Use
	Wait-and-Signal Synchronization
	Wait-and-Signal Synchronization
	Multiple-Task Wait_and_Signal Synchronization
	Multiple-Task Wait_and_Signal Synchronization
	Single Shared-Resource-Access Synchronization
	Single Shared-Resource-Access Synchronization
	Recursive Shared-Resource-Access Synchronization
	Recursive Shared-Resource-Access Synchronization

