Semaphores

Semaphore (Token)

* A kernel object

 One or more threads of execution can
acquire or release for the purpose of
synchronization or mutual exclusion

Creation of Semaphore

Semaphore control block (SCB)
Unique ID

Value (binary or count)
Task-waiting list

Semaphore-
Control Block

Semaphore
Name or ID

Task-Waiting List

e

B

Determines how many
semaphore tokens are
available.

Binary or a
Count

Figure 6.1 A semaphore, its associated parameters,
and supporting data structures.

Semaphore

« Semaphore is like a key that allows a task
to carry out some operation or to access a
resource. (e.g. a key or keys to the lab)

Semaphore Count

Semaphore (Token) count is initialized
when created

A task acquire the semaphore: count Is
decremented

A task releases the semaphore: count Is
Incremented

Token count = 0 : a requesting task blocks

Task Waiting List

 FIFO or priority

 When an unavailable semaphore becomes
available : first task in the list to acquire,
blocked task-> running state (highest
priority) or ready state

Binary Semaphore

 Value: 0 unavailable/empty
e Value: 1 available/full

Acquire
(value =0)

Initial
value = 1

lapie U value =0

Release
(value = 1)

Counting Semaphore

Initial count > 0

Release
(count = count + 1)

Release
(count = 1)

Acquire
(count = 0)

Acquire
(count = count -1)

Initial count = 0

Mutual Exclusion (Mutex)
Semaphore

* A special binary semaphore that supports
ownership, recursive access, task deletion

safety, priority inversion avoidance
prOtOC()l . Acquire (recursive)

: (lock count = lock count +1)
Acquire

(lock count = 1)

Initial
(lock count = 0)

Release
(lock count = 0)

Release (recursive)
(lock count = lock count - 1)

Mutex Ownership

 Ownership of a mutex is gained when a
task first locks the mutex by acquiring it.

* A task loses ownership of the mutex when
It unlocks It by releasing it.

* Recursive locking: when a task requiring
exclusive access to a shared resource
calls one or more routines that also require
access to the same resource.

Mutex

« Task Deletion Safety: While a task owns a
mutex, the task cannot be deleted

 Priority inversion avoidance

Typical Semaphore Operations

Create
Delete

Acquire : walt forever, wait with a timeout,
do not walit

Release

Flush: unlocks all tasks waiting on a
semaphore

Typical Semaphore Use

« Wait-and-Signhal Synchronization

R SR e e
"‘5 -:R-:j P -
. > a n

S

Binary Semaphore
(Initial value = 0)

Figure 6.5 Wait-and-signal synchronization
between two tasks.

Wait-and-Signal Synchronization

tWaitTask runs first

tWalitTask makes a request to acquire the
semaphore but blocked

tSignalTask has a chance to run
tSignalTask releases the semaphore
tWaitTask unblocked and running

Wait-and-Signal Synchronization

tWaitTask()
{

Acquire binary semaphore

}
tSignalTask()

{

Release binary semaphore

Multiple-Task Wait_and_Signal
Synchronization

e tSignalTask: lower priority

Binary Semaphore
(Initial value = 0)

Figure 6.6 Wait-and-signal synchronization
between multiple tasks.

Multiple-Task Wait_and_Signal

Synchronization

tWaitTask1()
{

Acquire binary semaphore

}
tWaitTask2()

{

}
tSignalTask()

{

Flush binary semaphore’s task-waiting list

}

Single Shared-Resource-Access
Synchronization

« Danger: problem when the 3" task release
-> use mutex

Binary .
Semaphore . -
(Initial value = 1)

Single Shared-Resource-Access
Synchronization

tAccessTask()

{
Acquire binary semaphore
Read or write to shared resource
Release binary semaphore

}

Recursive Shared-Resource-
Access Synchronization
e tAccessTask calls -> Routine A -> Routine

B : need to access to the same shared
resource

Recursive ™>~.__
Mutex

Figure 6.9 Recursive shared- resource-access
synchronization.

Recursive Shared-Resource-
Access Synchronization

tAccessTask() RoutineB()
{ {
Acquire mutex Acquire mutex
Access shared resource Access shared resource
Call RoutineA Call RoutineB
Release mutex Release mutex
} }
RoutineA()
{

Acquire mutex

Access shared resource
Call RoutineB

Release mutex

	Semaphores
	Semaphore (Token)
	Creation of Semaphore
	
	Semaphore
	Semaphore Count
	Task Waiting List
	Binary Semaphore
	Counting Semaphore
	Mutual Exclusion (Mutex) Semaphore
	Mutex Ownership
	Mutex
	Typical Semaphore Operations
	Typical Semaphore Use
	Wait-and-Signal Synchronization
	Wait-and-Signal Synchronization
	Multiple-Task Wait_and_Signal Synchronization
	Multiple-Task Wait_and_Signal Synchronization
	Single Shared-Resource-Access Synchronization
	Single Shared-Resource-Access Synchronization
	Recursive Shared-Resource-Access Synchronization
	Recursive Shared-Resource-Access Synchronization

